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Objective:

Analysis of the Efficiency of Algorithms resulting from

Kane's Equation for Serial and Parallel Computation of Mass

Matrix.

Overview:

* Algorithms resulting from Kane's Equation and Modified

Kane's Equation.

* Analysis of two Classes of Algorithms for Computation of

Mass Matrix: The Newton-Euler Based Algorithms and the

Composite Rigid-Body Algorithms.

* Analysis of the Efficiency of Different Algorithms for

Serial and Parallel Computation.

* Conclusion



Multibody Dynamics

Case Study: Rigid Multibody as Specialized to a Single Chain

Robot Manipulator.

00

Multibody Dynamics: Solution for Q from

AQ=_T-b=_ (i)

A: nxn Symmetric Positive definite Mass Matrix
eo

Q: nxl Vector of Generalized Accelerations

_" nxl Vector of Applied Forces/Torques

b: nxl Vector of nonlinear Terms (Bias vector)

iF" nxl Vector of Applied Inertia Forces/Torques

The O(n 3) Algorithms for Multibody Dynamics:

1) Computation of b and

2) Computation of Mass Matrix A.

3) Solution of Eq. (1) by Inversion of A.

Kane's Equation is widely used for Computation of Mass
Matrix.



Kane's Method: Notation

Q: nxl Vector of Generalized Coordinates

U: nxl Vector of Generalized Speeds

n

Choice of U: U : Y A (_ + B
1 1, lj j

j=l

Angular and Linear Velocity of Body (Link) i

n

--_ L --i(]) J -i(t)
J=l

n

V = _ V U +V--i --i(j) j --i(t)
j=l

: Angular Velocity of Body i
i

: jth Partial Angular Velocity of Body i
i(j)

: Angular Velocity of Remainder Terms
l(t)

V : Linear Velocity of Center
i

of Mass of Body i

V
i(j)

: jth Partial Linear Velocity of Center of Mass

of Body i

m

V
l(t)

: Linear Velocity of Center of Mass of Body i

Remainder Terms



Kane's Method: Notation

Partial Angular and Linear Momentum

N = I_
-t(j) =l-[ (j)

F :mY
--t(J) t-i (J)

N : jth Partial Angular Momentum of Body i
i(j)

F : jth Partial Linear Momentum of Body i
1(j)

Kane's Equation for Computation of Mass Matrix

The element a of Mass Matrix A is Computed as
lj

n

a i = V .F + o_ .Nj --k(i) --k(j) --k(i) --k(J)
k=j

n

= V .mY +_ .I_
--k(1) k--k (J) --k(i) --k--k (j)

k=J



Kane's Equation: Analysis of General Case

For Analysis of the General Case, We Set U = Q.
i z

= Z and _ = 0
--i(j) --j -i(t)

i

__. = _ z.q
I j l

j=l

V = (_Z.x P ) and V
--i(j) j --i', j --i (t)

= 0

i

V = (Zx P )Q
-i -j -i', j j

j=l

N = I_ = IZ
--i (j) --i-i (j) --i--j

F = m.(_Z.x P )
-i(j) _ j -i*,j

Kane's Equation can be written as

n

al = t,_ (Z x P ).m (Z x P ) + Z .I Z
j --i --k _, i k --j --k *, j --i :k--j

k=j



AN O(n 3) Algorithm Based on Kane's Equation

For i = I, 2, ..., n

For j = i, i+l, ..., n

n

ai = I (Z x P ).m (Z x P ) + Z .I Z
j --i --k m, i k --j --k _, j --i =k--j

k=j

This Algorithm is Designated as Original Kane's Equation (OKE)

Algorithm.



Modified Kane's Equation

n

ai =J
k=J

(Z x P ).m (Z x P ) + Z .I Z
--j --k _, j k --i --k m, i --j --k-i

n

=_ Z.
-j

k=j

x (mZxP(-Pk-,j k-i --k"i
9

) +Z.IZ
-j =k--i

n

= _. z .((-Pk.,x-] j
k=j

(mZx P ) +
k--i --k* i

IZ)
=k--i



AN O(n 2) Algorithm Based on Kane's Equation

For i = I, 2, ..., n

For j = i, i+l, ..., n

P =P +p
--j, i --j-l, i -j, j-1

P =P +S
--j_, i --j,i --j

N = IZ
--j (i) --j--i

F =m(ZxP )
-J(1) J-i -j" i

For j = n, n-l, ..., i

f =F +f
--j(1) --j(1) --j+l(i)

n =N +SxF +n +P xf
--j(i) --j(i) --j --j(i) --]+l (i) --j+l, j --j+l (i)

a =Z.n
ij --j -j (i)

This Algorithm is Designated as Variant of Kane's Equation (VKE)

Algorithm.



Algorithms for Computation of Mass Matrix

J ,

A -P (1)

all = all =/"i (2)

For the conditions given as

Qi = 1 and Qj = Qj_:i = 0 For j = 1, 2, ..., n (3)

Two physical interpretations of Eqs. (2) & (3) lead to two

classes of algorithms for computation of mass matrix:

1. The Newton-Euler Based (N-E B) Algorithms.

Underlying Physical Concept: Propagation of acceleration

among rigidly connected bodies.

The Variant of Kane's Equation (VKE) Algorithm belongs to

this class.

2. The Composite Rigid-Body (CRB) Algorithms.

Underlying physical Concept: Propagation of force among

rigidly connected bodies.
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Algorithms for Computation of Mass Matrix

Clearly, the two physical interpretations are the same.

We have shown that the algorithms of the two classes can be
transformed to one another.

From an algorithmic point of view, the main difference

between the algorithms of the two classes is the presence of

a two-dimensional recursion in Composite Rigid-Body

Algorithms.

The main issue is to determine the best algorithm(s) for

serial and parallel computation.

The Original Kane's Equation Algorithm is the least efficient

since its computational complexity is of O(n3).

The computational complexity of both the Newton-Euler

Based Algorithms and Composite Rigid-Body Algorithms is of
O(n2). However, the Composite Rigid-Body Algorithms, in

general, are more efficient.



Algorithms for Computation of Mass Matrix

There are four major redundancies in the Original

Newton-Euler Based Algorithm which can be removed by:

1) Optimizing the Newton-Euler Formulation for the

conditions given in Eq. (3),

2) Using a variant of Newton-Euler Formulation,

3) Choosing a better coordinate frame for projection of

equations.

4) Introducing a two-dimensional recursion in the

computation which transforms it to an equivalent

Composite Rigid-Body Algorithm.
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A Variant of Newton-Euler Based Algorithm

Step 1:

For j = I, 2, ..., n

For i = j, j+l, ..., n

_(i,j) = _Z(j)

0

¢(i,j) = V(i-I,j) + __(i,j)xP(i,i-l)

F(i+l,i,j) = m(i)V(i,j) +__(i,j)xh(i)

N(i+l,i,j) = k(i)__(i,j)

Step 2:

For i = n, n-l, ..., j

F(n+l,n+l,j) = N(n+l,n+l,j) = 0

F(n+l,i,j) = F(i+l,i,j) + F(n+l,i+l,j)

N(n+l,i,j) = N(i+l,i,j) + N(n+l,i+l,j) +

P(i+l,i)xF(n+l,i+l,j)

a.. = Z(i).N(n+l,i+l,j)
jl - --

This algorithm results from removing the first two redundancies

of the 0 N-E B Algorithm. It is clearly equivalent to the 0(n 2)

algorithm resulting from the Kane's Equation or the Variant of

Kane's Equation (VKA) Algorithm. I_3



m(i) Mass of body i.

h(i)

k(i)

z(i)

First moment of mass of body i about point 0..
1

Second moment of mass of body i about point 0..
1

Axis of joint i

P(i,j) Position vector from point j to point i.

_(i,j) Angular acceleration of body i resulting from the

unit acceleration of joint j.

V(i,j) Linear acceleration of body i (point 0.)
1

resulting from the unit acceleration of joint j.

F(k+l,i,j) Force exerted on point O. due to the acceleration
i

of bodies i through k, i.e., the bodies contained

between points Oi and Ok+l, resulting from the

unit acceleration of joint j.

N(k+l,i,j) Moment exerted on point O. due to the acceleration
1

of body i through k, resulting from the unit

acceleration of joint j.



A Variant of Composite Rigid-Body Algorithm

Step 1 :

For i = n, n-l, ..., I

M(i) = m(i) + M(i+l)

H(i) = h(i) + H(i+l) + M(i+l)P(i+l,i)

A

K(i) = k(i) + K(i+l) -M(i+l)P(i+l,i)P(i+l,i) -

P(i+l,i)H(i+l) - H(i+l)P(i+l,i)

f(i) = Z(i)xH(i)

n(i) = K(i)Z(i)

a = Z(i).n(i)
Ii -- --

Step 2:

For j = i-l, i-2, ..., I

f(j) = £(j+I)

_n(j) = __n(j+1) +__P(j+l,j)xf(j+1)

a = Z(j)._n(j)
jl



M(i)

H(i)

K(i)

Mass of composite rigid-body i composed of bodies i

through n.

First moment of mass of composite riEid-body i about

point 0..
i

Second moment of mass of composite rigid-body i

about point 0..
1



Comparison of Serial Efficiency of Different
Algorithms

In order to study the relative efficiency of the algorithms,

the optimal choice of coordinate frame(s) for projection of

the Equations should be carefully analyzed.

For the Variant of Newton-Euler Algorithm, projection of all

equations onto any fixed frame leads to maximum

computational efficiency; It requires O(n) transformations.

Projection onto the body frame leads to copmputational

inefficiency; it requires O(n 2) transformations!

For the Variant of Composite Rigid-Body Algorithm,

projection of Step 1 onto body frame and Step 2 onto any
fixed frame leads to maximum computational efficiency; It

requires O(n) transformations.

Projection of both steps onto the body frame leads to

copmputational inefficiency; it requires O(n 2)

transformations!



Comparison of Serial Efficiency of Different
Algorithms

Redundancy

p

® ® ® ®

V C R-B 0 C R-B V N-E B 0 N-E B

®

OKA

Serial Efficiency

OKEA: Original Kane's Equation Algorithm.

0 N-E B: Original Newton-Euler Based Algorithm.

V N-E B: Variant of Newton-Euler Based Algorithm.

0 C R-B: Original Composite Rigid-Body Algorithm.

V C R-B: Variant of Composite Rigid-Body Algorithm.

Algorithm

VN-EB

VCR-B

General

Mul. Add.

(39/2)n2+ 19n2+

(195/2)n-95 55n-66

2
(9/2)n + 4n2+

(231/2)n-181 88n-137

n=6

Mul. Add. Total

1192 948 2140

644 535 1179
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Computational Structure of and Data-Dependency in Algorithms for
Mass Matrix

a) The Newton-Euler Based Algorithms

b) The Composite Rigid-Body Algorithms



Algorithmic Choice for Parallel Computation of
Mass Matrix

Parallelism in Computation of Mass Matrix: Time and
Processors Bouds

We have shown that the time lower bound in computation of

mass matrix is of O(log2n ) and can be achieved by using O(n 2)

processors.

The Original Kane's Equation Algorithm might seem very

suitable for parallel computation since all elements of the

mass matrix can be computed totally in parallel.

The computation of each element of mass matrix can be

performed in O(log2n ) steps by using O (n) processors. Hence,

in order compute all the elements in parallel and achieve the

time lower bound of O(log2n), O(n 3) processors are required!

Using both the Newton-Euler Based Algorithms and the

Composite Rigid-Body Algorithms, the mass matrix can be

computed in O(log2n ) steps with only O(n 2) processors.
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Algorithmic Choice for Parallel Computation of
Mass Matrix

The Newton-Euler Based Algorithms are more suitable for

parallel computation due to their regular computational

structure and a lesser degree of data-dependency in their

computation.

1) They provide a high degree of coarse grain parallelism:

The columns of the mass matrix can be computed in

parallel.

2) They are more regular and have a finer grain:

A higher degree of parallelism in computation of the

elements of each column can be exploited

3) Their parallel computation on a two-dimensional

processor array requires simpler communication and

synchronization mechanisms.

Choice of Coordinate Frame for Parallel Computation on a

two-dimensional processor array:

For the Variant of Newton-Euler Based Algorithm it is more

efficient to project the equations of onto the End-effector

(Body n) frame while for the Variant of Composite Rigid-Body

Algorithm it is more efficient to project the equations onto
the base frame!



Conclusion

* For recursive serial computation, the Variant of Composite

Rigid-Body Algorithm is significantly more efficient than
the Variant of Newton-Euler and the Variant of Kane's

Equation Algorithms.

* For parallel computation with O(n2) processors, i.e.,

maximum exploitation of parallelism, the Variant of

Newton-Euler and the Variant of Kane's Equation Algorithms

are not only significantly more efficient than the Variant of

Composite Rigid-Body Algorithm but they also require

much simpler architectural features.

* For parallel computation with O(n) processors, i.e., limited

exploitation of parallelism, the Variant of Composite

Rigid-Body Algorithm is more efficient than the Variant of

Newton-Euler and the Variant of Kane's Equation Algorithms
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Comparison of Two Classes of Serial and Parallel

Algorithms for Computation of Mass Matrix

Algorithm

VCR-B

SA

VN-EB

VCR-B

PA

VN-EB

VCR-B

PPA

VN-EB

Computation Cost

General

2
((9/2)m+4a))n +

((231/2)m+SSa))n-

(181m+137a)

n=6

644m+535a

2
((39/2)m+19a)n +

((195/2)m+55a)n-

(95m+66a]

l192m+948a

(48m+63a)[log2n]+

(100m+65a)

244m+254a

(33m+S3a)[log2n]+

(109m+89a)

208m+IS8a

(9m+Sa)n+(48m+63a)[log2n]+

(58m+24a)

256m+261a

(39m+38a)n+(27m+ISa)[log2n]+ 340m+280a

(25m-2a)

SP

2.40

2.98

2.32

I. 90

Proc.

1

1

n(n+l)/2

n(n+l)/2

n

n

SA: Serial Algorithm.

PA: Parallel Algorithm with 0(n 2) processors.

PPA: Parallel Algorithm with O(n) processors.



Parallel VNEB algorithm

Step 1:

I) Parallel compute R(O+I,O) by all processors of Row j.

For j = I, 2 ,..., n

For i = I, 2, ..., j

PRji : R(j+I,j)

2) Parallel compute R(n+l,j) by processors of Column i.

For i = I, 2, ..., n

For j = i, i+l, ..., n

= 1 step 1 until [log2(n+l-i) ], DoFor

R(j+2W, j) = R(n+l,j)

j+2n>j+2n-_zn+l

R(j+2 n,j) = R(n+l,j) = R(n+l,j+2n-l)R(j+2 _-i,j)

j+2Wmn+l>j+2 TM

R(j+2 n,j) = R(j+2 n,j+2n-l)R(j+2 n-l,j)

n+l>j+2n>j+2 n-1

EndDo

3) Shift R(n+l,j+l) by processors of Row j+l to the processors of

Row j.

For j = I, 2, ..., n

For i = 1, Z, ..., j

PR : R(n+l, j+l)
Jl

with R(n+l,n+l) = U (Unit Matrix)

204



n+Ip + n+lH4) Parallel compute n+IZ(j), (j l, j), and (j) by all

processors of Row j.

For j = i, 2 ,..., n

For i = I, 2, ..., j

n+l Za) PR : (j) = R(n+l,J)JZ(J)
ji

with ]Z(j) = [0 0 I] t

n+Ip =b) PR : (j+l,j) R(n+I,j+I)J+IP(j+I,J)
31

c) PR
]i

n+1 , S(j ): S(j) = R(n+l j+l) j+1 "

n+lH )n+1Sd) PR : (j) = M(j (j)
]I

Step 2:

I) Parallel compute P(j+l,i) and _(j,i) by processors of Column i.

For i = I, 2 .... , n

For j = i, i+l, ..., n

For W = I step I until [log2(n+l-i) ], Do

_(j+2 _,i) = _(j+2 _-I,i) = Z(i)

P(j+2 n,j) = P(j+l,i)

j+2n>j+2n-1__n+l

P(j+2 n, j) = P(j+I, i) = P(j+2 _, j+2n-1)+p(j+2 TM, j)

j+2n-_n+ 1>j+2 TM

P(j+2 n,j) = p(j+2 n,j+2 n-1)+P(j+2 n-l,j)

n+l>j+2n>j+2 TM

End_Do



2) Parallel compute V(j,i), F(j+l,j,i), and N(j+l,j,i) by

processors of Column i.

For i = I, 2, ..., n

For j = i, i+l, ...n

a) PRjI: V(j,i) = _(j,i)xP(j+l,i) = Z(i)xP(j+l,i)

b) PRji: F(j+l,j,i) = m(j,i)xH(j)+M(j)V(j,i)

H(j)xV(j, i)

Step 3:

I) Parallel compute F(n+l,j,i) processors of Column i.

For i = I, 2, ..., n

For j = i, i+l, ..., n

For _ = 1 step 1 until [loga(n+l-j)], Do

F(j+2_,j,i) = F(n+l,j,i)

j+2_>j+2_-1mn+l

F(j+2_,j,i) = F(n+l,j,i) = F(j+2_,j+2_-I,i)+F(j+2_-I j,i)

j+2W>n+l>j+2 TM

F(j+2_,j,i) = F(j+2_ j+2_-I i)+F(j+2_-1,j,i )

n+l>j+2_>j+2 TM

End Do



2) Shift F(n+l,j+l,i) by processors of Row j+l to processors of

Row j.

For j = I, 2, .... n

For i = I, 2, ..., j

PR : F(n+l, j+l, i)
jl

3) Parallel compute N(n+l,j,i) by processors of Column i.

For i = I, 2, ..., n

For j = i, i+l, ..., n

a) PR : N(j+l,j,i) = N(j+l,j,i)+P(j+l,j)xF(n+l,j+l,i)
jl

b) For _ = 1 step 1 until __[l°g2(n+l-J) ], Do

N(j+2 _,j,i) = N(n+l,j,i)

j+Z_>j+2_-Imn+ 1

N(j+Zn, j,i) = N(n+l,j,i) = N(n+l,j+2n-l,i)+N(j+2n-l,j,i)

j+Zn_n+l>j+2 n-i

N(j+2W, j,i) = N(j+2D j+2W-l,i)+N(j+2W-l,j,i )

n+l>j+2W>j+2 _-i

End Do

2) Parallel compute a by PR .
ji jl

For i = I, 2, ..., n

For j = i, i+l, ...n

PR : a = Z{j).N(n+l,j,i)
jl jl
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Algorithm-To-Architecture Mapping

Determination of an Algorithmically-Speciaslized Parallel

Architecture for Efficient Implementation of the Algorithm.

1) Processors Interconnection and Communication

Complexity

For perfect mapping:

a) The required interconnection among processors of each

column is Shuffle Exchange augmented with Nearest-Neighbor

(SENN).

b) The required interconnection among processors of each

row is Nearest-Neighbor.

The perfect mapping leads to a communication complexity of

O(log2n ). Mapping on an array with nearest-neighbor

interconnection leads to the communication complexity of

O(n).

2) Synchronization Mechanism

Exploitation of parallelism at two computational levels:

a) Coarse grain parallelism in computing columns of mass
matrix, and

b) Fine grain parallelism in computing the elements of each
column.

Global Clock-Based Synchronization Mechanism (similar to

Systolic Array) for processors of each column, and Local Data

Driven (similar to Wavefront Array) for processor of each
row.

2)0


